Syndicate content

Law and Regulation

Transforming Transportation 2018: To Craft a Digital Future for All, We Need Transport for All

Jose Luis Irigoyen's picture



Exponential progress in how we collect, process and use data is fundamentally changing our societies and economies. But the new digital economy depends fundamentally on a very physical enabler. Amazon and Alibaba would not exist without efficient ways to deliver products worldwide, be it by road or ship or drone. The job you applied for through Skype may require travel to London or Dubai, where you’ll expect to get around easily.

In fact, as the backbone of globalization, digitization is increasing the need to move people and goods around the planet. Mounting pressure on transportation as economies grow is leading to unsustainable environmental and safety trends. Transport needs are increasingly being met at the cost of future generations.

Can the digital revolution, which depends so much on efficient global and local mobility, also help us rethink transportation itself? To be a part of the solution to issues such as climate change, poverty, health, public safety, and the empowerment of women, the answer must be yes. Transport must go beyond being an enabler of the digital economy to itself harnessing the power of technology.

Three reasons why maritime transport must act on climate change

Nancy Vandycke's picture


For years, the transport sector has been looking at solutions to reduce its carbon footprint. A wide range of stakeholders has taken part in the public debate on transport and climate change, yet one mode has remained largely absent from the conversation: maritime transport.

Tackling emissions from the shipping industry is just as critical as it is for other modes of transport. First, international maritime transport accounts for the lion’s share of global freight transport: ships carry around 80% of the volume of all world trade and 70% of its value. In addition, although shipping is considered the most energy-efficient mode of transport, it still uses huge amounts of so-called bunker fuels, a byproduct of crude oil refining that takes a heavy toll on the environment.

Several key global players are now calling on the maritime sector to challenge the status quo and limit its climate impact. From our perspective, we see at least three major reasons that can explain why emissions from maritime transport are becoming a global priority.

How to protect metro systems against natural hazards? Countries look to Japan for answers

Sofía Guerrero Gámez's picture
Also available in: 日本語
Photo: Evan Blaser/Flickr
The concentration of population in cities and their exposure to seismic hazards constitute one of the greatest disaster risks facing Peru and Ecuador. In 2007, a magnitude 8.0 earthquake along the southern coast of Peru claimed the lives of 520 people and destroyed countless buildings. The most recent earthquake in Ecuador, in 2016, left more than 200 dead and many others injured.
 
Of course, these risks are not exclusive to Latin America. Considered one of the most earthquake-prone countries in the world, Japan has developed unparalleled experience in seismic resilience. The transport sector has been an integral part of the way the country manages earthquake risk— which makes perfect sense when you consider the potential consequences of a seismic event on transport infrastructure, operations, and passenger safety.

地下鉄システムを自然災害から守るには:日本に答えを求める海外の国々

Sofía Guerrero Gámez's picture
Also available in: English
写真: Evan Blaser/Flickr
ペルーとエクアドルが抱える災害リスクの中でも特に大きな問題は、都市への人口集中と地震災害に対する脆弱性です。2007年、ペルー南部の沖合でマグニチュード8.0の地震が発生し、520人の命を奪い、数え切れないほどの建物が損壊しました。2016年にエクアドルで起きた最近の地震の犠牲者数は200人を超え、さらに多くの人が負傷しました。

もちろん、こうしたリスクは中南米の国だけに存在するわけではありません。世界有数の地震多発国である日本は、耐震性に関して他に例を見ない経験を培ってきました。国による地震リスクの管理体制の要となってきたのは交通セクターです。地震が交通インフラとその運営、乗客の安全に与えるであろう影響の大きさを考えれば、それも当然のことと言えるでしょう。

E-commerce is booming. What’s in it for urban transport?

Bianca Bianchi Alves's picture
Também disponível em: Português
 

Worldwide, e-commerce has experienced explosive growth over the past decade, including in developing countries. The 2015 Global Retail E-Commerce Index ranks several of the World Bank’s client countries among the 30 most important markets for e-commerce (China ranks 2nd, Mexico 17th, Chile 19th, Brazil 21st, and Argentina 29th). As shown in a 2017 report from Ipsos, China, India, and Indonesia are among the 10 countries with the highest frequency of online shopping in the world, among online shoppers. Although growth in e-commerce in these countries is sometimes hindered by structural deficiencies, such as limitations of banking systems, digital payment systems, secure IT networks, or transport infrastructure, the upcoming technological advances in mobile phones and payment and location systems will trigger another wave of growth. This growth will likely lead to more deliveries and an increase in freight volume in urban areas.

In this context, the Bank has been working with the cities of Sao Paulo and Bangalore to develop a new tool that helps evaluate how different transport policies and interventions can impact e-commerce logistics in urban areas (GiULia). Financed by the Multidonor Sustainable Logistics Trust Fund, the tool serves as a platform to promote discussion with our counterparts on a subject that is often neglected by city planners: urban logistics. Decision-making on policies and regulations for urban logistics has traditionally been undertaken without sufficient consideration for economic and environmental impacts. For instance, restrictions on the size and use of trucks in cities can cause a number of side effects, including the suburbanization of cargo, with warehouses and trucks located on the periphery of cities, far from consumers, or the fragmentation of services between multiple carriers, which may lead to more miles traveled, idle truck loads, and inefficiencies.

Motorization and its discontents

Roger Gorham's picture
Photo: Sarah Farat/World Bank
They say a picture is worth a thousand words.  While visiting the World Bank library the other day, I was struck by how many development publications featured pictures of motor vehicles on their covers, even though most of them covered topics that had little to do with transport.  The setting and tone of the pictures varied – sometimes they showed a lone car on a rural highway, sometimes congested vehicles in urban traffic, and sometimes a car displayed proudly as a status symbol – but the prevalence of motorized vehicles as a visual metaphor for development was unmistakable to me: in the public imagination, consciously or otherwise, many people associate development with more use of motorized vehicles.

Indeed, motorization – the process of adopting and using motor vehicles as a core part of economic and daily life – is closely linked with other dimensions of development such as urbanization and industrialization.

Motorization, however, is a double-edged sword.

For many households, being able to afford their own vehicle is often perceived as the key to accessing more jobs, more services, more opportunities—not to mention a status symbol. Likewise, vehicles can unlock possibilities for firms and individual entrepreneurs such as the young man from Uganda pictured on the right, proudly showing off his brand new boda boda (motorcycle taxi). 

But motorization also comes with a serious downside, in terms of challenges that many governments have difficulty managing.  Motor vehicles can undermine the livability of cities by cluttering up roads and open spaces—the scene of chaos and gridlock in the picture below, from Accra, is a telling example. In addition, vehicles create significant safety hazards for occupants and bystanders alike… in many developing countries, road deaths have effectively reached epidemic proportions. From an environmental standpoint, motorized transport is, of course, a major contributor to urban air pollution and greenhouse gas emissions. Lastly, motorization contributes to countries' hard currency challenges by exacerbating their long-term demand for petroleum products.

Given these challenges, how are developing countries going to align their motorization trajectories with their development goals?  What should the World Bank advise our clients about how to manage this process?

Is it too early to agree on SDG indicators for transport?

Muneeza Mehmood Alam's picture

 
In March, the international community of statisticians will gather in New York and Ottawa to discuss and agree on a global indicator framework for the 17 Sustainable Development Goals and the 169 targets of the “2030 Agenda for Sustainable Development”. The task at hand is ambitious. In 2015, heads of state from around the world committed to do nothing less than “transform our world”. Monitoring progress towards this ambition is essential, but technically and politically challenging: it will require endorsement from all UN Member States on how to measure progress. In March, it will be the second attempt at getting this endorsement.

Why is it important? “What gets measured, gets done”. Measuring progress is essential for transparency and accountability. It allows us to understand our accomplishments and failures along the way, and identify corrective measures and actions—in short, it allows us to get things done.

What is the issue? Politically, the SDG process has been country led. This means that countries—and not international agencies, as in the case of the Millennium Development Goals—have guided the whole SDG process, including leading discussions and the selection of goals, targets and indicators.   Technically, the development of a robust and high-quality indicator framework is highly complex: the indicator should align closely with each target, have an agreed-upon methodology, and have global coverage. In reality, many indicators do not. For example, the indicator proposed to measure the 11.2 SDG target (“By 2030, provide access to safe, affordable, accessible and sustainable transport systems for all”) is the “proportion of population that has convenient access to public transport”. Data is not yet available for this indicator. Additional indicators may be needed to cover all aspects of the target.

Traffic jams, pollution, road crashes: Can technology end the woes of urban transport?

Shomik Mehndiratta's picture
Photo: Noeltock/Flickr
Will technology be the savior of urban mobility?
 
Urbanization and rising incomes have been driving rapid motorization across Asia, Africa, and Latin America. While cities are currently home to 50% of the global population, that proportion is expected to increase to 70% by 2050. At the same time, business-as-usual trends suggest we could see an additional 1 billon cars by 2050, most of which will have to squeeze into the already crowded streets of Indian, Chinese, and African cities.
 
If no action is taken, these cars threaten literally to choke tomorrow’s cities, bringing with them a host of negative consequences that would seriously undermine the overall benefits of urbanization: lowered productivity from constant congestion; local pollution and rising carbon emissions; road traffic deaths and injuries; rising inequity and social division.
 
However, after a century of relatively small incremental progress, disruptive changes in the world of automotive technology could have fundamental implications for sustainability.
 
What are these megatrends, and how can they reshape the future of urban mobility?

Three factors that have made Singapore a global logistics hub

Yin Yin Lam's picture
Then vs. now: the Port of Singapore circa 1900 (left) and today (right). Photos: KITLV/Peter Garnhum

When it gained independence in 1965, Singapore was a low-income country with limited natural resources that lacked basic infrastructure, investment and jobs.

A few decades later, the picture couldn’t be more different. Singapore has become one of Asia’s wealthiest nations, due in large part to its emergence as the highest-performing logistics hub in the region (see World Bank Logistics Performance Index).

The numbers speak for themselves. Today, the small city-state is home to the world’s largest transshipment container port, linked to over 600 ports worldwide. Singapore Changi airport is voted the best internationally, and is served by about 6,800 weekly flights to 330 cities. Finally, the island nation’s trade value amounts to 3.5 times its GDP.

Singapore’s achievements did not happen by chance. They result from a combination of forward-looking public policy and extensive private sector engagement. This experience could provide some lessons to any developing country seeking to improve its logistics network. Let us look at three key factors of success.

Getting a global initiative off the ground: What can transport learn from energy?

Nancy Vandycke's picture

In May last year, key stakeholders joined the World Bank Group in calling for global and more concerted action to address the climate impact of transport while ensuring mobility for everyone. More recently, the Secretary-General’s High-Level Advisory Group on Sustainable Transport noted, in its final recommendations to Ban Ki-Moon, emphasized the need for “coalitions or partnership networks” to “strengthen coherence” for scaling up sustainable transport, as well as establishing monitoring and evaluation frameworks. These issues have been raised at Habitat III, COP22 and at the Global Sustainable Transport Conference in Ashgabat.
 
As the global community readies itself to move from commitments to implementation, what can transport learn from similar initiatives in other sectors, such as Sustainable Energy for All (SE4All)?

Pages